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In this paper, we look for periodic solutions, with prescribed energy
e T
‘ h e R, of Hamilton's equations:

. oH oH 2
= 21 =22 ; J
(H) X = = (x,p), P ™ {x,p) . P ,

t is assumed that the Hamiltonian H is ccnvex on :Rn X mp, and

that the origin (0,0) is an isolated equilibrium. It is also assumed

that some ball B around the origin can be found such that the energy
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surface H_l(h) lies outside B but inside +2 B. Under these assump-

tions, we prove that there are at least n distinct periodic orbits of

the Hamiltonian flow (H) with energy level h. \
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SIGNIFICANCE AND EXPLANATION

Hamilton's equations are the fundamental equations of mechanics. They
describe the behaviour of a physical system which does not interact with
other systems, so that its total energy (= kinetic energy + potential energy)
is constant throughout time. Periodic solutions of these equations corres-
pond to vibrations of the system, which then goes through the same motions
at reqular intervals.

Finding such vibrations is very easy for linear systems, and very dif-
ficult for nonlinear systems. The only thing one could do in the nonlinear
case up to very recently was to linearize the system near an equilibrium;
this is the so-called theory of small oscillations which is a part of every
course in classical mechanics, and which is crucial to the study of the
stability of equilibria.

This paper proves that for a nonlinear Hamiltonian system with n
deyrees of freedom there are at least n different modes of vibration on
each prescribed energy level. It is the first result of this kind, since
the energy level, i.e. the oscillations, are not required to be small.

The corresponding result for small oscillations due to A. M. Liapunov has

been known for nearly one hundred years. ACCESSION for Ai?’
Nus White Section
DDC Buff Section [
UNANNOUNCED a
JUSTIFICATION
BY R
DISTRIBUTION, AVAILABILITY CODES
Dist. .MU and/or SPECIAL
e —

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

anidalsin, “ - : i




-y

ON THE NUMBER OF PERIODIC TRAJECTORIES FOR A
HAMILTONIAN FLOW ON A CONVEX ENERGY SURFACE

Ivar Ekeland” and Jean-Michel Lasry*
I. INTRODUCTION.
The evolution of many conservative systems in mechanics or physics can be

described by Hamilton's equations:
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Here (x,p) € EP x m?, the so called phase space, and n is the number of degrees

of freedom. The first n components x = (xl,...,xn) represent position variables, .
and the n 1last ones p = (pl,...,pn) momentum variables. The function
H : EF x:m" + R, the Hamiltonian, represents the energy of the system. Indeed, it

is an immediate consequence of equation (H) that H is an integral of motion, i.e. i

Hix{t),p(t)) is constant along any solution of (H).
Equations (H) can be written in a more concise way. Introduce the phase variable
1 u= (x,p) in Egn and the symplectic linear map ¢ of R2n into itself:
2 (1) ou = o(x,p) = (p,-x} . -
4 We denote by H' the euclidian gradient of H. Equations (1) now become:
(H) G = oH' (u)
In this paper, we are interested in periodic solutions of equation (H). wWe will
] assume that the origin is an equilibrium, i.e. H'(0) = 0, so that equation (H) has
the constant (and hence periodic) solution u(t) =0 for all t. The problem then is to

find non-constant periodic solutions. It can be tackled from two directions. One can

either prescribe the period T or the energy level h.
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For the fixed-period problem, we refer the reader to the recent papers of
Rabinowitz ({191, [20]), Clarke-Ekeland ([6]) and Ekeland ([7]). We simply mention
that these papers prove the existence, for each T > 0, of some non-constant T-periodic
solution of (M), under various assumptions on the shape and growth of H.

We will be dealing with the fixed-energy problem. It goes back to Liapunov, who
encountered it in his study of equilibrium stability. From now on, we scale the
Hamiltonian by setting H(0) = 0. We shall consider trajectories of equation (H) rather
than solutions: if wu(t) is a solution of (H), a translation in time, v{(t) = u(t + 6),
yields a different solution but the same trajectory.

Liapunov ([14]) and Horn ([12]) have shown that, if H 1is analytic, and the matrix
of second derivatives H"(0) is non-resonant (*), then there is some ¢ > 0 such
that, for all h # 0 within the range (-¢,c), there are at least n distinct
periodic trajectories with energy level h. 1In a celebrated paper, Weinstein ([24];
see also Moser, (16)) has proved the same result, assuming only that H is C2 and
H"(0) 1is positive definite.

All these results are local, holding only in an unspecified neighbourhood of the
origin, and so the question arises whether there is a global version, valid for any
h > 0. Successively Seifert ((23]) for split Hamiltonians, H{x,p) = %—pz + V(x)
with V" (x) positive definite, Weinstein ([25)) for C2 strictly convex Hamiltonians,
Clarke ({5]) for general convex Hamiltonians, have proved the existence of at least one
periodic trajectory for each energy level h > 0. Rabinowitz, however, has a result
which goes beyond convex Hamiltonians ({19); [20]). He has also shown how to deduce
the fixed-energy case from the fixed-period case.

The basic result of this paper (theorem IV.l) is that, if H 1is convex and

satisfies the uniform estimate

au2 < Hu) - Zau2 Yu ¥ 0

(*) the eigenvalues + iwl,..., + iwn of the matrix ~H"(0) are purely imaginary,

and no quotient wi/wj, i # 3, 1is an integer.
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for some a > 0, then there are at least n distinct periodic orbits on each energy
level h > 0. This theorem, and its corollaries, constitute a first step towards a
global version of Weinstein's theorem.

‘The proof uses the legendre transform G of H with respect to the variable
u = (x,p). Performing such a transformation with respect to the variable p alone
is classical: this is how one reverts to the Lagrangian from the Hamiltonian
formulation. However, performing this transformation with respect to both variables
together is a new idea. It was introduced by Aubin-Ekeland ([1]) in another context,

and by Clarke ([5]) who used it to find periodic solutions. His method was developed

in the papers [6] and [7] where it is shown that the classical principle of least action:

T
(8) extremize f [pkx - H(x,p)ldt
0
has a dual formulation:
. T
(9) extremize [ [G(-§,¥) - yqldt b
o]

Prescribing suitable boundary conditions, one gets two problems in the calculus of
variations which are equivalent: there are explicit formulas which transform an
extremal of one problem into an extremal of the other. For instance, in the case when

one looks for T-periodic solutions of equation (H), the appropriate boundary conditions

T T

are f u(t)dt = 0 for the first problem, and f v(t)dt = 0 for the second, with
0 0

v = {y.Qq).

3 From a technical point of view, it is better to change the time scale, so as to
deal always with the interval (0,1). We will work in the Hilbert space E of all

functions v = (y,2) such that:

2 o, 1 ’
(10) ve 10, R™N, [ dtat =0= [ vvyar,
0 0

on which we define the functionals J and K by:

1
. (1) Jw) = [ -y(t)glt)at
0
_3_
B S e . B T B e O e
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1
(12) Kv) = [ G(-§(t),y(t))at .
0

The functional IT used in the papers [6] and [7] to find T-periodic solutions is
K + TJ. Critical points of IT yield, after rescaling time, T-periodic solutions of
equations (H). 1In this paper, where the period T is no longer prescribed but the
energy level h 1is, we begin by studying the particular case where the Hamiltonian H
is positively homogeneous of degree two. This analysis is carried out in Section II.
The peculiarity of the homogeneous case is that, if u is a solution of (H), then so
is M for any X > 0, so that any particular energy level can be reached simply by
rescaling. We therefore use a tfunctional where neither the prescribed energy level

nor the period appear explicitly, namely:

(13) I=J+ (K+ a)k

Here a > 0 is an ad hoc constant. The choice of this functional is partly
arbitrary, and partly supported by heuristic reasons which we now develop.

Let us figure out the behaviour of the functional 1I. Note first that is the sum
of the quadratic form J, which is neither positive nor negative, and the convex
functional (a + K)K, which may well be non-differentiable. So I itself is neither
convex nor differentiable.

The behaviour near zero or infinity is easily investigated. At infinity, the
fourth-order term K2 takes precedence over the second-order terms J and aX, so
that 1(v)/||v]] » +» when [|v|| » =. Near the origin, on the other hand, the second-
order terms take precedence, so that the functional I behaves like J + aK: this is
a linear combination of J and K, similar to the one we used in the fixed-period
problem. Finally, the critical points of I (assuming for the moment that K |is
differentiable) are giver by:

(14) I'=J 4+ (a 4+ 2K)X' = 0O

Setting (a + 2K) = T—l, we rewrite this equation as KXK' + TJ' = 0. This is just

I& = 0, which has been seen to give T-periodic solutions of equation (H). Summing up,

the critical points of I, i.e. equation (14), give rise to periodic solutions of the

-4-
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Hamiltonian system, and what we have to show is that this procedure does indeed yield

n distinct periodic trajectories with a given energy level.

This is where we want to stress the difference between periodic trajectories, which
are closed curves in Rzn, and periodic solutions, which are mappings from Sl = R/Z
into Rzn. what a critical point of I gives us is some number T > 0 and some

l-periodic function ul{t) such that:

=] L

(15) G = oH' (u) ,

so that t - u(%ﬂ is a T-periodic solution of equation (H). But two different solu-
tions (Tl,ul) and (Tz,uz) can in fact describe the same periodic trajectory:

~ either because Ti = le, T2 = k2T, ul(t) = u(klt), u2(t) = u(k2t), with k1
and k2 integers, not both equal to 1. In this case, the points ul(t), u2(t) and
u2(t) run along the same closed curve in m?n, with ui(t) doing ki revolutions
(i =1,2) while u(t) does only one.

~ or because Tl = T and ul(t) = u2(t + 0), with 6 # 0 modulo 1. In this
case, the points ul(t) and uz(t) run after each other on the same curve with a
fixed time lag.

In other words, we first have to eliminate from consideration the critical points
of I which will lead to pairs (T,u) where T is not the true minimal period of
u. This is done in Section II by restricting ourselves to the subset Q@ of E where
I < 0. This is where the particular choice of the constant a > 0 in formula (13)
comes in. If it is small enough, the subset € will not be empty. If it is large
enough, every u € Q will have 1 as its minimal period. That a can be chosen just
right follows from the estimates (2).

We next have to take into account the action of the group Sl; this means we have
to identify functions u € E which differ only by a translation in time. This is done
in Section III, where we show how this group action can actually be turned to our

advantage. Indeed, the very existence of this group action, and the fact that it

leaves the functional 1 invariant, put strong constraints on the topological
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situation, which enables us to show that I has at least n distinct families of
critical points, defining distinct trajectories of (H) on the prescribed energy level.

The result is stated in Section III as an abstract theorem on critical points of
functionals on Hilbert space which are invariant by an Sl-action. The result is first
proved in the case where the functional is Cl, along classical lines: it is essen-
tially the proof Clark ([4]1) gave for even functions (Zz-action), where we replace
the notion of genus by the index theory of Fadell-Rabinowitz ([11}). The case where
the functional split as the sum of two terms, a smooth one and a convex one, then
follows by a regularization procedure, which 1s an earlier work by the second author, we
construct a new functional, which has the same critical points as the original one, but
which is Cl and falls within the range of the earlier result. This abstract theorem
will apply to the functional I defined by (13), without any smoothness assumption on
G.

The proof then is complete for the case when the Hamiltonian H, and its Legendre
transform G, are positively homogeneous of deqree two. 1In the last section, IV, we
show how to infer the general case from this particular one. This is done by using a
trick, which we learned from Rabinowitz, although it seems to be well-known among
specialists. Finally, we compare our result to Weinstein's theorem, to grasp the
meaning of condition (2) and give food for future thought.

The reader who wants to avoid convex analysis may read this paper under the added
assumption that the Hamiltonian H is C2, with H"{u) positive definite, uniformly
for wu € Rzn:

(16) Te + 0 : i,y B v, > elvi?

, . 2 R
This smooths everything down: G becomes C , and I |is Cl. One can replace
subgradients by ordinary gradients everywhere, and just use Thczorom III.1 instead of

Theorem III.2. The details are given in an earlier version of this paper ([8]).
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II. THE CASE OF A HOMOGENEOUS HAMILTONIAN.

A - Main statement.

In this section, we shall deal with a particular case, which already contains the
whole difficulty. It is the case when the Hamilton H, still convex, is also positively
homogeneous of degree two. If certain estimates on H are satisfied, the corresponding
Hamiltonian equations will be shown to have at least m (1 <m < n) distinct periodic
trajectories on each energy surface. In Section IV, the same conclusion will be seen
to hold, with the same estimates, but without the homogeneity assumption.

Theorem 1. Let H : Kgn *'K& be a Cl convex © action, positively homogeneous of
degree two, with an isolated zero at the origin:
8 YA >0, Yu# 0, HOw = AH(u) >0 .

Assume there exists constants &,y and an integer m with:

(2) 0 <f <2y and 1 <m <n
2 2 2
(3) vu e R, yln ull® 2w <eflul]
where ﬁm is the projection defined by: k
(4) R NS IR A N (%) oeeasX 00reeey0rpyseneyp #0,...,0)

. o e . \ 1 m
Then there are at lcast m distinct periodic trajectories u ,...,u of

Hamilton's equations (H) on the energy level l:

(5) ab = ot wh)
6) Hwhey) = 1, all te R
(7) ui(t + Ti) = ui(t), all temR.

; N . i s s . s
Moreover, T, 1s the minimal period of u, and satisfies the following estimate:
1

(8) SO T, < 2ng”h .

Let us first note that the assumption that the assumption on H will imply that
there i3z some constant ' 0, namely the maximum value of H on the unit sphere,

such that:

2
(9) Hu € Rzn, H(u) > dlalic .




We now explain what we mean by trajectories. We say that two mars Y and

u, : R _)RZn are equivalent if there exists some Cl diffeomorphism . : R - stz
that u = uzow. If uy and u2 are equivalent solutions of the same autonomous
differential equation with a right-hand side continuous and nonvanishing along the
solutions (for instance equation (5), (6) - recall that u # 0 implies H'(u) # 0)
then y(t) = £ + to for some constant to and all t; if the right-hand side is
locally Lipschitzian, then two solutions having one common point are equivalent.
Aperiodic trajectory of system (}{) is the equivalence class of a periodic solutioncf (..

B - The function G.
The proof uses the Legendre transform G of the function H with respect to
u = (x,p). Since H 1is convex, G is defined by Fenchel's formula:

(10) G{v) = Sup{{u,v) - H{u)!}
u

where from now Sup will stand briefly for Sup on *
u u€ R

Let us recall a few standard facts of convex analysis (see (15], [21], [10]). The
function G : IR2n +> RU{+=} 1is convex and lcwer semi-continuous. It need not be
differentiable. Its subdifferential at a point v € ]R2n where G(v) < +=» is the set
'G(v) defined by: 1
(11) Gv) = {ue ]Rzan(w) - Gv) > (w =~ v,u) wuw’

It is a (possibly empty) closed convex set. It is compact and non-empty whenever
G is continuous at v. The multi-valued map v - 3G(v) has closed graph and is maxi-

mal monotone. Finally, we have Fenchel's reciprocity formulas:

(12) H(a) = Sup{(u,v) - G(v)}
v
(13) v =H" (u) = H(u) + G(v) - (v,u) = 0= u ¢ G(v)

In our particular case, G inherits from H a few more properties:

Lemma 1. The function G 1is positively homogeneous of degree two and satisfies the

estimates:

(14) woe R, G(rv) < (ay) H|n v(i? :
m - m " i
) . i

(15) we R, @ tvi? <o j

1

(16) we R, 60v) < (40)”

,
vil
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Moreover, G 1is continuous and subdifferentiable everywhere. The eguations

(17) u € IG(v) and v = K'(u)
are equivalent, and they imply that, for some uniform constants 5 and
as) lull - slivl]

(19) Tull = s {lull

[~

Proof. The first properties are obtained in a straight-forward manner from Fenchel's
formula (10). First homogeneity:

G{lw) = sup{(u,>v) - H(u);
u

= sup{ (aw,iv) - H(iw)}
w

= AZSup’(w,V) - H{w)}
w

= X2G(v)

Then condition (14):

G(M v) = sup{(u,iv) - Hu)!
m u m

< sup{l_u,v) - YHquuz}
u

= (4y)qlllﬂmvll2

Next condition (15):

Il

G(v) sup{(u,v) ~ H(u)}

u
sup { (u,v) ~ SHUHZ}
u

v

]

s Hv)? .

Finally condition (16) is obtained from condition (9). It implies immediately
that G(v) < 4+~ for every v € E. Since G 1is convex and finite-valued on Rzn,
it has to be continuous, and hence subdifferentiable everywhere. The equivalence of
equations (17) is just Fenchel's reciprocity formula (13).

Since H is positively homogeneous of degree two, its derivative is positively

homogeneous of degree one: H'(Av) = 3H'(v) for A >~ 0. Equation (19) follows, with:

Svo= Max{[lH ) |l jEMu) = 10




One gets inequality (18) in the same way, from tue equation 3G(Av) = XiG(v). It
yvields
& = Max{||w]]lw e Gw),6) =1},
a finite number, since the compact-valued mapping &G is upper semi-continuous and the
level set G(u) = 1 is compact.

C - The functionals J and K

: . 1 2
We now consider in the Sobolev space H;’oc(]R’]R n), the subspace E of all

functions u with period one and mean zero:
1 1

2 .
(20) E= fvlv e Lz(m,l;m“"),J vit)dt = 0 = [ o)At
0 0

It will be endowed with the interior product:
1
(21) (w, vl = [ awivit)at
0
and the corresponding Hilbertian structure. We shall identify the functions u € E
with their restrictions to [0,1). Note that the injection E:Lz (O,l;]Rzn) is compact.

Every function v € E has a Fourier expansion which converges in E:

( v lt) Y g2iTkt

A . . . 2 2 . .
similarly, the Fourier expansion for v in L (0,1; R n) is given by:

vit) = F (2iok)vke21.nkt
keZ

. . 2
Using Plancherel's theorem, and denoting by H ||2 the L -norm, we get:

vll2 = 1 v, 12

15= T 4% Iy, |®
k#0

Hence, using the fact that VO = 0, the estimate:

ek, [Ivll, < e,




This estimate can be improved if there are no first-order term in the Fourier

expansion. If |v. | =0, we have

|

2 2

(27) holl= 1 v

27,5 0k

2 2.2 2
(28) lvils = Z 4nx v, |

2 K2 k
and hence:

-1y.

(29) Yv e E : 1v1!=0, HVHzi (4m) HvH2 .

Of course, the estimates (26) and (29) will also hold individually for each com-
ponent of v = (y,g). Note that the second estimate is sharper than the first by a
factor 2 from the point of view of functional analysis. It is this fact which will
enable us to distinguish between the functions which have non-vanishing first Fourier
coefficient (and hence have 1 as their minimal period), and the other ones. Loosely
speaking, we will separate the normal modes from their harmonics.

We now define two functionals J and K on E:

1 1
Jv) = [ -gy,aenat = [ (y(t),gt))de
6] 0
1 1 1 1
(30) =5/ @)y aiende = 5 [ (-ovit),v(e))at
“ 0
‘1
K(v) = / G(-g(t),y(t))dt
n
1
(31) = [ G(-o¥(t))at .
0

<
The functional J 1is clearly a continuous quadratic form on E, and hence is C .
To compute its gradient in E, we write it as a scalar product:

=L
(32) Jilv) = 5 (v,Av)E P

where Av = u 1is the unique solution in E of the equation U = -ov. The operator
A : E - E is casily seen to be self-adjoint, so that:

(33) J' (v) = av

e e b e Bk o e




Note that J takes on positive values as well as negative ones. However, ucing

inequality (26) we readily get an estimate for J:

L o112 1 2
(34) lawn | < g Ivll5= g livilg

The functional K : E > RU{+»} ipherits variouc properties from the functi~on
It is convex, non-negative, lower semi-continuous, positively homogeneous of degree two.

It satisfies the following estimates (compare with (14) and (15)):

(35) weE, kv < @nv2
(36) weeE, (48)-1Hv|lé < K(W)
where v = (y,q) belongs to Em if and only if:
ym+1(t) = ... = yn(t) =0 = gm+l(t) = ... = gn(t) = 0 ¥t

Using condition (16), we get another estimate for G:
-1 12
(38) ¥ ¢ B, K(v) < (4a) Hv'lE < 4o,

Since K 1is lower semi-continuous, convex, and finite everywhere, it must bc ccen-
tinuous. It follows that OJK(v) # ¢ at every point v; this subdifferential is easil,
computed:

Lemma 2. The subdifferential 3K(v) of K at v is the set of all w e E such that

there exists u0 € 1'R2n with:
(39) —ou(e) +u’ € W(-o¥(t))  a.e.t.
Proof. We define a closed subspace E' of L2 (0,l;m2n) as follows:
1
(30) ue E'= [ ult)dt =0
(o]

. . 2
Let F be the 2n-dimensional subspace of L spanned by constant vectors.
Clearly E' and F are orthogonal subspaces.
The Hilbert spaces E and E' are isometric, through v -~ ¥ (restricted to

[0,11). Through this identification, the functional KX gives rise to a functional

K' on E' defined by




1
- (42) K"(w = | G(-ou(t))dt wu € L2(0,1; B
o]

The subdifferential of this functional in L2 is known to be (see [10])

(a3) K" (u) = {w" € L2|w"(t) € 03G(-ou(t)) p.p.

But K' is the restriction of XK' to E'. 1Its subdifferential must be the pro-

. . . : : 2
jection on E' of the subdifferential of K' in L :

3K' (u) = {w' € E|3u1 eF :w +ule 3K" (u) }
- L] L} l
= {w' e E|Hu1 € F:-ow' - ou € 3G(-ou)}
. . 1 o] ;
Going back to E, setting w' = w and -ou” = u , we get the desired result.

D - The functional I

We now use J,K, and a constant a > 0 to define a new functional I on E:
(45) I(v) = J(v) + (K(v) + a)K(v)

The whole proof hinges on the particular choice of the constant a. It has to
satisfy the condition:

(46) B < 2ma < 2y .

That such a constant exists is exactly assumption (2). The functional (K + a)K
is convex, non-negative and continuous, because XK is. It follows that it is sub-
differentiable everywhere, although it need not be differentiable. We want to compute
3{(K + a)X] in terms of K.

Lemma 3. Let ¢ : [0,+2) »R be an increasing convex function, with ¢(0) = O.

Assume ¢ is C1 on (0,*), with ¢'(t) >0 for t > 0. Then ¢ o K is continuous
and convex, with:

(47) K(v) # 0 = 3(v o K)(v) = (¢' o K{v))OK(V)

Proof. Take any u € 3K(v). We have, for all we E :

¢ o K(w) = ¢oK({v) > ¢' o K(v)[K(w) = K(v)}]

v

(¢' o K(Vv)u,w - v)
Hence ¢' o K(v)u € 3(v o K). We have proved that the right-hand side of equation

(47) is contained in the left-~hand side. WNow for the converse.

P T




Take any v where K{v) > 0, and any u € 3(¢ o K)(v). It will suffice to prove

that, for any direction w € E, we have, for t > 0:

(49) K(v + tw) > K(v) + 7 L (tw,u) + o(t)

‘o K(V)
The functijon t —» K(v + tw) is continuous on the interval lo,tol. Choose t0 so
small that K(v + tw) > 0 on this interval, and apply the mean value theorem to ¢:

(50) ¢ oo KV + tw) - ¢ o K(v) = w'(Kt)[K(v + tw) - K(v)] ,

where Kt is some number between K{v) and K(v + tw). Note that Kt -+ K{v) when

t > 0. Using this, and the definition of u, we get the desired result:

1
K{v + tw) - K(v) 2o RMT (tw,u) + e(t)
with Ei__t) = 1 - L (w,u) >0 when t -0 .

¢ o K(v) «J'(Kt)

Setting ¢ (s) = 52 + as, we get, for any v € E:
(52) A[K + a)K) (v) = (2K(v) + a) K(v) .

Now for the functional I itself. It is neither convex nor differentiable in
general. It satisfies the following estimate:

Lemma 4. There are constants cl,c2 >0 and k >» 0 such that
(53) ¥v e E, I{v) >c, + ¢C ,[v”2
4 -1 2 E

(54) the function v »> I(v) + k]lvHi is convex continuous.

Proof. Using the Q:finition (45) of I, and plugging in the estimates (34) and (36),

we get, for all v € E:

~1 .2 =1e2 ~ljen?
{55) I(v) iE?”"”z* {a + (48) [(vuz)ue) HVHZ .
Formula (53) follows by choosing ¢ and c, > 0 such that
a 14, 2 -2 4 2
(35 - 4—n]t + @R 2o 4ottt vEeR.,

To get relation (54) we take any k > (4ﬂ)-l.

Then J(v) + kllvl[; is a quadratic
form, and it is positive definite by relation (34), so that it is a convex functional.

It follows that:

-14-




(57) I(v) + kHng = ) + klvlP] « e

is a convex functional. It is obviously continuocus.
The subdifferential of I at v € E 1is defined to be the set:

(56) S1(v)

J'(v) + 301(K + a)K)(v)

L}

J'(v) + (2K{v) + a)3K{v)

The critical points of I are defined to be those points v € E where 0 € 3I(v).

Now J' is given by formula (33) and 3K by lemma 2, Putting the pieces together, we
see that v € E is a critical point of I if and only if there exists u® € RZn such
that
(57) [2K{v) + a]_lv(t) +u € Gl-g¥(t)) a.e.

We now proceced to find critical points of I and later on, we will relate them

to periodic trajectories of system (H).

E - Critical poins of I

This step of the argument uses a general result on functionals invariant by an
Sl-action. For the sake of clarity, we have postponed the proof of this result till
Section III, where it appears as Theorem 2.

Recall what is known about the functional 1I. It is everywhere finite and con-
tinuous. Tt is bounded from below and  I(v) + k{{v”é is convex for some k > 0. It
also satisfies the following condition of Palais-Smale type:

Lemma S. If (vk,uk) are sequences in E~-E, with Uy 4 \x(vk), such that:

(58) Sup I(v, ) < 4=
k
K
(59) u -0 in E (i.e.: HukH - 0)

then there Is a subscquence Vi which converges in E.

n
Troof. Comparing condition (58) with estimate (53), we sce that the sequence Vi is
bounded in  F. It follows from condition (38) that the sequence K(vk) is bounded

in IP.

The condition u ¢ JI(vk) means that (see (56)):

-1
6r 2v - ' F
(e (’V(vk) + a) (uk J {vk)) € )K(vk)




2

By Lemma 2, this means that there exists some constant ug e ®" such that
(61) (2K{v, ) + a)-l( (£)-on (t)) + 0 € 3G(-ov _(t)) e
Xk Vi " u, oV a.e.

The sequences uy and v, are bounded in E, so that ﬁk and Ok are bounded

2 : . .
in L. Because of estimate (18), the right-hand side of equation (61) is bounded in

2 "
I, and so are the vk because of estimate (26). It follows that the sequence ES
is bounded in Rzn.

We now take subsequences so that:

(62) Ve v weakly in E
n
(63) K{v, ) »p in R
n
(64) u}(: » 3 in BT
It follows that Vi > v in L2; we already know that ﬁk » 0 in L2. This implies

n
that the left-hand side of equation (61) converges in L2 towards

(65) we= 20 +a) %+,

But equation (6l) can be inverted, using Fenchel's reciprocity formula (13), to
read:
(66) G (8) = o' [(2K(v,) + a) Ty, (£) - ol (£)) + ul] a.e
k K k Y k' €

Now, because of estimate (19), the nonlinear map w - oﬂbw sends Lz(o,l;rgn)

into itself. By a theorem of Krasnoselskii ([13]; see [10] for a shortexr proof), it

follows that it is continuous. This enables us to pass to the limit in formula (66):

67 @ > OB (@) in 20, 1; R .

This is the desired result. We can see also now that vy converges in E to
n

v so that o = K(v). 3

. 1
The time has now come to introduce the natural action of the group § = R/Z on

the Hilbert space E. To each © ¢ s1 we associate the time translation L(8) : E -~ E

defined by:

(68) L(glv : t > vi(t + 8) .

_16‘
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* Note that this is a group action: L(0) is the identity, and L(el + 8,) is

2
L(Gl)L (62). The map (8,v) - L(8)v is continuous on s1 Xx E. The maps L(8) are

. linear isometries of E:

(69) weE, Lol =l

The functionals J and K, being integrals over one period, clearly are invariant
by this sl-action. So is the functional 1I:
(70) IoL{8) =1, all 9 e s1

Let § be the set of points where I < O.
(71) Q= {verliv) <o} .

It is an open invariant subset of E, and does not contain the origin. It has
more over two very important properties with respect to the Sl-action: they are
crucial to our proof of Theorem 1, and this is where the two-sided inequality (46)

comes in.

Lemma 6. Take any v in §. Then its first Fourier coefficient is non-zero:

. (72) (w= 1§ vkezi"’“‘,e e}=lv ) #0 .
k#0

Proof. Assume v, = 0. We then have Hv”z_i (4n)_lH6H2, by estimate (29). Writing

this into the formula (30) for J, we get:
1 N 1.2
(73) J(v) _>_--2—[|cv||2||vl|2 > -@m vl

Writing this into the definition (45) of I, and using estimate (36), we get:

(74) I(v) > JWv) + ak(v)

> -(817)—1”\7”; + a(46)-1||v||i

I
B

a 1 2
G- vlg -
This is non-negative, since a was chosen in formula (46) to be greater than

B/27. Hence I(v) > 0, in contradiction with the assumption that v Dbelongs to q.

It follows from Lemma 6 that all functions v in § have minimal period one:

1

they cannot be k-l-periodic, for any integer k > 2. 1In other words, the group S

acts freely on Q.




sphere on which the action of S1

lemma 7. There lies in € an invariant (2m - 1)
is the usual Hopf fibration.
- 2
Proof. Imbed the euclidian (2m - 1) sphere 52m 1 in R
2 2

TE +In, =1
(75) e IGUIRE s H .

g, =0=n, for m+1l<i<n

i i - -

This is the unit sphere. Of course, rszm-l, with r > 0, will be the sphere of

radius r.

With any (£,1) X xR,

the formulas:

(76) Y(E,n)(t) =Ecos 2mt + nsin 27t
(77) Q(£,n) (t) =ncos 2nt - £sin 27t .
Note the relation:
(e, (0) = vg,m (¢ - 3)
It follows that the linear map V : Ign -+ E is injective, so that r I = V(rszm_ )
is diffeomorphic to SZm—l' It follows also from relation (78) that r L

More precisely, setting ¢ = £ + in € cm,

vi{g)(t) = ;e_21"t, we get the relation:
79) L(OYV(D) (t) = ge 21TE*O) g e gt
(80) L) = vie 2™y, wvoe st

This means that the action of S1 on

e—216c

r I pulls back through v-l

2m-1

[Sd s , the usual Hopf fibration.

We will now show that r > 0 can be chosen so small that r I
2. This will conclude the proof.

Take any v € r £ and compute I(v) = J(v) + (K(v) + a)K(v).

J{v) by plugging equations (76) and (77) in formula (30):

-18-

we associate a function VI(E,n) = (Y(£,n),Q(E,n)) by

1

is invariant.

and writing equations (76) and (77) as

as the action

is contained in

We first compute




T T ——

ot el gl S

Py

1
[ (27% sin 27wt - 270 cos 27t,n cos 27t - ¢ sin 27t)dt
0

i

(81) J(v)

22 2 2
= =7 ("7 + n°) = =7r
Since the components vi are identically zcro for m + 1 < i n, we can use

estimate (35):

- el - '
(82) k)~ @n v o a2
- F 2
- 2 2 -1 2
= (47) T4y (7T o« ‘2) =y l"’r2 .
Hence an estimate for I(v):
2 122 -1 2
(83) T(v) - =mr o+ (y 1v~r +a)ly 1. r2)
4
S o 4
= - (1 - Q¥} + -

Since a has been chosen in formula (4A) to be strictly less than  y/=, the
second-order term in (83) is strictly negative, and takes preccdence over the fourth-
order term near zero. It follows that TI(v} - 0 for small cnough r - 0, and hence
r I C @ as desired.

We now apply Theorem IIT.2 to the functional I. All the assumptions have been

. . C e 1 .
checked, so the conclusion holds: * contains at least m distinct S ~orbits con-

sisting of critical points for I.

F. Periodic trajectorics of (H).

The time has now come to return to the initial problem of finding periodic
trajectories of Hamilton's equation (H) on the cnergy level H = 1. We first show
that we can associate with cach critical point of I in a periodic solution of
Hamilton's equation.
lemma 8. let v ¢ E bhe a critical point of I in . Recall that there is some
constant uq 4 an such that:

(84) 2r(v) + al wit) + u ¢ a(-av(e))  a.e.

~19-

B g o




Set:

(85) w=a + 2K(v)
=1
(86) o= Klv) °
(87) ult) = plw Yviet) + u¥)

Then u is a C1 periodic solution of equation (H):
(88) u = oH* (u)
lying on the energy level 1:
(89) H(u(t)) =1, all t
and with minimal period T:

' (90) T=yt

(91) w7t <1< 2ngt

Proof. Formula (84) is just (57) rewritten. By Lemma 6, the function v has minimal
period 1. It is clear from its definition (87) that the function u will have
minimal period m-l = T. We now have to prove that it is indeed a solution of

Hamilton's equation, and to check relations (89) and (91).

Comparing (84) and (87), we have:

(92) o hate) € sc(-0v( t)) a.e.

. Using Fenchel's reciprocity formula (13) or (17), this becomes:

h (93) —o¥(wt) = H' (o Tu(t)) a.e.

We have seen in Lemma 1 that H' 1is positively homogeneous of degree one, so that

(93) becomes:

1 (94) —opVlut) = H' (u(t)) a.e.
? But it follows from formula (87) that ua(t) = pv( t). Writing this into (94),
? we get:

(95) -gl(t) = gH' (u(t)) a.e.

; . . . 1 s , X .
Since H' is continuous, u is C°, and is a classical solution to Hamilton's

equation (H). Let us find its energy level.

3

A




since H is positively homogeneous of degree two, we have 2H{u) = {(u,H' (u))

(Buler's formula). Writing this into Fenchel's reciprocity formula (13), we get: 4

(u,H'(u)) = G o H'(u) = 2H(u) - G o H' (u)
2n

(96) H{u)

]

(97) H(u) G ° H'{u), all u € R

Applying this to formula (93), we get:

(98) Hlu(t)) ozH(p-lu(t))

2 .
o G(=av(ut))
Let h be the energy level: H(u(t)) = h for all t. Integrating the preceding

equation, we get:

(99) h=uw/ Ht)a

= w? [ Gleovlut)at

5 1
p° [ Gl(-oU(s))ds
0

]

OZK(V) =1

Only estimate (95) is left. We start off by writing fromula (97) in a different

way :
(100) G oM () =2 (wH ), all uer"
Comparing with equation (93) this yields: .
. 1, -1 .
(101) G(-av(wt)) = 5—(. u(t) ,~v{wt))
Using equation (87), this becomes:
. 1 -1 o] .
(102) G(~av(ut)) = 3 (v Tv(wt) + u ,=-av{at))
Integrating over one period, the constant disappears, and we are left with:
-1 -1
W l [N
{103) w [ Gl-a¥(ut)dt = = f (v (wt) =¥ (ut))dt
0 0

(104) K(v) = = 3w




=y

_ =1 _ _ Kv)
T=w"= J(v)

Using estimates (34) and (36), this implies that T Z'nB-l. The other inequality

(91) we get simply by writing:

(106) u~1 = (2K(v) + a)_l < a_l < 2ﬂ2~1

We now prove that the m distinct Sl-orbits of critical points for I which we
have found in O give rise to distinct periodic trajectories for the system (H) (we
refer to subsection A for what we mean by distinct trajectories).

Lemma 9. let vy and v be two critical points of I in Q and let u and u

2 ' 1 2
be the periodic solutions of (H) associated with vy and v, by Lemma 8. If vy
and v2 belong to different Sl-orbits in E, then uy and u, describe different

R R . 2n
trajectories in R .

2
Proof. 1If ul and u2 described the same trajectory in R n, there would be some

to € R such that:

(107) ul(t) = uz(t + to), all

It follows that Uy and u, have the same minimal period: T1 =T,.

Lemma B, we get Wy = Wy then K(v1)=K(v2), then Py~ Py then, by formula (93):

Using

. -1
(108) -ovl(t) H (ol ul(t))

1}

P |
H (02 uz(t + to))
= -sz(t + tO) all t

= t t i = t
Hence vl(t) v2( + 0) for all t. This means that vl L(to)v2, so that vy

N

and v2 belong to the same S'~orbit in E.
This concludes the proof of Theorem 1: we have found m distinct critical orbits

of I in i, which, by Lemma 9, have to correspond to m distinct periodic

. . R 2
trajectories of (H) in R .
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1
I1IT. S -ACTIONS AND INVARIANT FUNCTIONALS ON HILBERT SPACE.

In this section, we prove two abstract theorems about critical points of func-
tionals invariant by an Sl-action. It is self-contained and can be read independently
of the rest of the paper. Its main result, Theorem II1I.2, was used in the preceding
section to prove Theorem II.1.

Theorems III.1l and III.2 differ only by the regularity assumptions on the func-
tional F, which is assumed to be Cl in Theorem 1, while in Theorem 2 we assume
there is some k > 0 such that T{v) + k!!v”2 is a convex function of v. The proof
of Theorem 1 will be obtained by a topological argument of Liusternik-Schnirelman type,
and Theorem 2 will follow by a regularization argument.

Let us first set the stage. Throughout, E will be a Hilbert space on which the

1 . R . 1 .
group S acts through isometries. 1In other words, with every ¢ 5, we assoclate

a linear operator L(“) ¢ L(E) such that:

voe s, vue g, flLmuti=tull
L(n) = Id
Ve € 4 = B <)
¥ ( v 2), L( 1 2) L('l)L( 2)
. . 1
Wwe will assume also that the map (9,u) - L(Mu 1is continuous on § < E. Recall
1

that a subset of E is invariant if L(f)u ¢ for all 4 ¢ S and u ¢ .. We
say that S1 acts freely on if A # &' implies L{(8)u # L(8")u for all ue¢ .

. 1 .
1 - Invariant C functions.

Qur purpose in this subscction is to prove the following:

1 . . .
Theorem 1. Tet © ¢+ E *F hea © function, bounded from below and satisfying con-
dition (C-): if u is a sequence in E such that Sup F(un) -0 and F'(un) -0,
n n
then u has a convergent subscquence. Assume ¢ 1s invariant:
n
1
(1) Yoo 37, F oo L) = F

1
and S acts freely on the subseth:




If 2 contains an invariant (2n - 1) spherc , and the gty
1

is the usual Hopf fibration, then there are at least n & -orbit- '
sisting of critical points of F. L

Note that condition (C-)} is of Palais-Smale type. Thoe striot et
Sup F(un) 0 makes it easier to check and comes in handy in various :yollorm:
n 1
{18]). Note also that the requirement that § acts freely on imglie .
does not contain the origin. 1In particular, F{(0) has to be positive: f

To prove this theorem, we need the cohomological indcx theory ¢f Dud

Rabinowitz. Let us just recall the relevant features and refer the reader T2 0

paper [11) for full details and proofs in the gen~ral casc of a compact Lic

PP

on E.

. . 1 . .
With every paracompact space A on which § acts freel,, the, associate z

€

integer, its index, with the following properties:

(1) Index 4 =20
. ai

(2) l_’_IndexAi-lv——‘zh—mé for A # &

Monotonicity: if there is an equivariant continuous
(3)

map ¢ : A - B, then Index A < Index B
(4) Subadditivity: Index (AUB) < Index A + Index B

Continuity: if K is a closed invariant subset of A, there is 2
(5)

closed invariant neighhourhood N of K with Index X = Index ¥

orials

Note that the dimension formula (2) is misprinted in Section & of the

paper. For the sake of completeness, we quote the definition of Index A: iz
; k=1 . .

greatest integer k such that f*(< ) does not vanish, whcre f is a cla

map of the fibre bundle A - 1\/5l into the universal Sl-bundlo ch', anad

2 . .
v € H (Cl:Pw,z) is the first universal Chern class.

It follows from this
S . 2n-1 : 1 . C e
definition that the index of S , with the usual S -action (Hor{ filr.a ,
. . . A1
We now proceed to the study of the function F. 1t is O, =m0 that v »

is a continuous vector field on However, it need not be lLipschitel

cannot integrate it. For this purpose, we will use a pseudo-gradient,

—24_

v
i

[Ny




e et e R AT baspiin i R 2% kit T S ST P e RSO 2 T T Al 1 R e R e ek oyt T - e - L e B T tntidey.,, - _

B Definition 2. A vector field % : E . E is a pseudo-gradient for F if it is ls-all-

Lipschitzian and, for all u € E:
[ - ' 12
. (6) (F' (), 7 () > [F W]
7) 2{lrr ey 2 flecnr ]
From now on, the arguments are standard, and can be found for instance in Palais
{17] or Rabinowitz {18]. wWe first state that there exists on ! a pseudo-gradient,

equivariant with respect to Slz

Lemma 3. There is a vector field ¢ : E - E satisfying conditions (6), (7) and
(8) ¥e € ST, & o L(G) = L(B) o : ;
Proof. The existence of a pseudo-gradient Yy is proved in {17} or {18], using a

partition of unity. We then define a new vector field % : . - E by:

(9) Yue E, () = [ L{-8)u(L{2u)ds (j 43 =1

1
S Sl

We check successively conditions (6), (7) and (8), using the fact that the L(=) P
are isometries, and that F 1is invariant, F(L(%)u) = F(u). Differentiating with
respect to u, this yields F'(L(8)u) = L(8)F'(u) and hence !|F'(L(5)u)! = AR (w) .
We have:

(Fru), ) = [ (F' (W), L(=8)$(L()u))d5
= [ (L=-0)F" (L(Du),L(-8) v (L(M)u))de

= [ (F(L(B)u), p{L{8)u))d?

7

[ @ ifar= e |12

Bl < filnen s@memur |las 1
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We then give a deformation lemma, the proof of which can be found in the same
references. Here we denote by QC the set of points u such that F{u) <c. It is
a closed invariant subset of Q.

Lemma 6. Take ¢ < 0 and set K = {xlF'(x) = 0,F(x) = c}l. It is a compact invariant
subset of Q. For any invariant neighbourhood N of K, there exists a constant
€ >0 and a continuous map:

(10) v : (0,1} x (QC+C\N) - QC+E\K

with the following properties:

(11) ¢0(x) =x, all xc¢e QC+C\N
(12) 4, 0L(O) =LA ov,, all 8¢ s
(13) wl(Qc+C\N) C Qc-s .
If K= ¢4, the same statement holds with N = 4§,
Procf. Let n and . be given, with -c > n > ¢ > 0. Consider the disjoint invariant
sets
(14) A=1{xe2F(x) >c+n or Flx) <c - n}
(15) B={xe€ 2c=-c 2F(x) <c+c¢el.
Define functions f : @ >R and «a :]R+ 1R by:
(16) £(u) = [dist(u,A) + dist(u,B)) ‘dist (u,A)
1 if 0 <t <1
(17) ) = -1
t if t>1
It follows from the definition that f 1is invariant. We now consider the vector
field Vv on K defined by:
(18) viw = £l ry i e
where :(u) 1is an equivariant pseudogradient for F.

The map < is simply the flow associated with the locally Lipschitzian vector
field V. It is shown in references [17] and [18], or in paper (4], that if n is

chosen small enough, ¢ is well-defined and satisties properties (11) and (13), as




. well as a few more.

. We are now all s

integer i Dbetween 1
(19) r,
i

By assumption,

that the ., 1 < i ~
i z

(2:0)

we have, for all

The proof now pr
Lemma 5. Each ci i
Proof. Assume it is
and some map < sati
such that:

(23)

Consider ¢l(B).
is invariant, because
because it acts freel

Index (B) - Index

“1
nition (20) of <5 t

(24)

and from condition (1

(25)

a clear contradiction

e -

POV Ll o

Condition (12) follows readily from the fact that the vectcr field

is equivariant: V o L(8) = L(8) o V.

et for the proof of Theorem 1. We start by associating with each

and n a family Fi of subsets of :

= {B C 2|B is compact, invariant, Index B > it .

contains a compact invariant subset £ of index n. It follows
n, all are non-empty, since all contain £. We define:

¢, = Inf Max F(u)| .
Beri ué B

i€ {1,...,n}:

0 > Max F(u) > c, > Inf F(u) > -=»
ney u€Q

c, > Q. .
i+l - i

oceeds in two steps:

s a critical value of F.

not. Apply Lemma 4 with K= ¢ and c = e there is some ¢ > 0

sfying conditions (11) to (13), with N = ¢. Pick some B € Ti

Max F(u) < o + e .
ue€eB

It is a compact subset of 7, because ¢ is continuous, and it

1

Cl and B are equivariant. The group sl acts freely on ¢1(B),
v on ... It then follows from the monotonicity condition (3) that

B, so that :I(B) also belongs to Ti. it follows from the defi-

hat:
ax Pl oo,
SN
u(l )
1) that:
Tax Ply) o -,
e (®)
!




s . . -1
If the c; are all distinct, the proof of Theoreml is complete: each F ((:i) contarn:
one of the n desired critical orbits. If some of the < coincide, the following lerc:

proves that there are infinitely many critical orbits, so that the theorem still :ol-ir

Lemma 6. Assume c, = cj, with i < j. cCall this common value ¢, and set:

(26) K={ue QF) =c,F' (u) =0}

Then Index K > j - i + 1.
Proof. The condition (C-)} implies that K is a compact invariant subsetof . B tic
continuity property (5), there is a closed invariant neighbourhood N of X witi tle
same index. Its interior I:I is still invariant, and by condition (3) or (4):
(27) Index K < Index I?l < Index N = Index K .

Let us now apply Lemma 4 to get some € > 0 and some map ¢ with the propert:ics

(10) to (13). ©Pick some B ¢ I‘j such that:

(28) Max F{u) < c + ¢ .
u€B

In other words, B 1is compact, invariant, and B C nc+s' Set C = B\N. By the
monotonicity and subadditivity properties (3) and (4), we have:
o
Index B < Index (C U N)

(29) °
Index C + Index N

Ia

But C 1is compact, invariant, and condition (13) tells us that ¢l (C} 1is con-
tained in wc-s' It follows from the definition (20) of < that:

(30) Index ¢1(C) <i .

Comparing inequalities (29) and (30), and remembering that B € I‘j, we get:

o
j < Index B < Index C + Index N

| A

Index wl(c) + Index K
< i + Index K .
If two of the c, coincide, the index of the corresponding K will be at least
2, and by condition (2), its dimension will be at least 3. Since the sl—orbits
have dimension 1, there must be an infinite number of them to fill up K. This

concludes the proof of Theorem 1.
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2 -~ Invariant non-smooth functions.

The space E, and the Sl-action L(%) are as described in the beginning. As in
the preceding subsection, we shall give conditions for an invariant function F on E
to have n distinct critical points, but we shall no longer assume F to be smooth,
or even finite-value. 1Instead, we assume the following:
F: E->RU {+=}] is lower semi-continuous, not identically +=, and there

(31)
exists some k > 0 such that G(v) = F(v) + klh/“z is a convex function of wv.

We then can define the subgradient 3G(v) of the function F at the point wv: !
(32) OF(v) = 9G(v) - 2kv ,
where 3G stands for the subgradient of G in the sense of convex analysis (see (15],
[21], [10) for instance), that is:

(33) %W)={UGEMW)~GW)i(w-vm)We E}
Note that OJF(v) # ¢ if and only if 23G(v) # ¢.
From (32) and (33) it can be seen that, if u € 3F(v), then:
(34) F(w) - F(v) - (w - v,u) :_-k|h/-w”2 Yw e E
which certainly implies that:
(35) Fw) = F(v) - (w~ v,u) >0 ([J[w-v|) vwweE

Conversely, if u € E satisfies condition (35), it will imply that:
(36) Glw) = G(v) - (w - v,u+2kv) >0 (|[lw=v|) wwe E.

Since the function G 1is convex, this will imply that u + 2kv € 3G(v). Summing
up, we see that 0JF(v) 1is the set of vectors u € E which satisfy condition (35). It
follows that the subgradient O5F does not really depend on the particular choice of
k in the decomposition F(v) = G(v) - k”sz, as long as k is large enough for &
to be convex.

We shall also make use of another rule of calculus: if some functional F splits
as F = Fl + Fz, with Fl being C2 and F2 convex lower semi-continuous, and if
there is some k > 0 such that FI(V) + kId 1is positive cefinite for all v ¢ E,
then F satisfies condition (31) and

F (v) = Fi(v) + RFZ(V), all v ¢ E .

-29-
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The proof is quite easy, using formula (35). If u € E belongs to Fi(v) + ﬁFz(v),

setting u, = u - Fi(v) € 8F2(v) we get:
F(w) = F(v) - (u,w - v)= (Fl(w) - Fl(v) - (F'l(v), w=-Vv)) + (Fz(w) - Fz(v) - (uz,w - v))

> (F{(w')(w- v), w - v) ,

for some w' on the line segment [v,w]. Using the assumption on Fi, we get the

estimate:

F(w) - f(v) - (u,w - v) Z-k”w-v“2

Hence, by formula (35), u € 3F(v). Conversely, if u € 3 (v), we claim that

u, = u - Fi(u) belongs to BFZ(V). Indeed, by formula (35), we have:

?_(w) - Fz(v) - (w - v,u2)

5 [Flw) -~ F(v) - (w -~ v,u)] - [Fl(w) - Fl(v) - (w - v, F'(u))]

o (|lw-vID

The result follows as desired.

A critical point of F

is a point v where:
(37) Fv) 20
s . . 1, R . b 12

If the function F 1is S -invariant, then so are the functions v - k|jv]|

(because the L(3) are isometries) and G (because it is the sum of the two preceding
c s . . 1 ,

ones). It follows that the critical points of F occur in S -orbits.

We now state the main result:
r Theorem 2. Let F : E - R U {+o} be a function, bounded from below, which satisfies

3 conditions (31) and

If (vn,un) are sequences in E xE such that Sup F(vn) < 0, u, € aF(vn)
(C=) n
and u, o 0, then there is a subsequence v, which converges.

Assume F is invariant:
) 1
(38} ¥4 S8, FoL(") =F
and S1 acts freely on the subset:

(39) "= {uIF-l(u) <0l

: . . . . 1 X
If contains an invariant (2n - 1) sphere [, and the action of § on I
is the usual Hopf fibration, then there are at least n orbits in ! consisting of

critical points of F. []
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Note that condition (C=) is of Palais~Smale type: it is the natural extension of
condition (C-) in the preceding subsection. It follows from the fact the subgradient
has closed graph as a multi-valued map from E to E that the limit of the subsequence
vnk has to be a ciitical point. Note finally that the requirement that s1 acts
freely on . implies that F(0) > O.

The proof of Theorem 2 relies on a regularization procedure following an earlier
idea of the second author. For an application of these ideas to Morse theory, the
interested reader is referred to [2].

et - >0 be given. We associate with F and ¢ the new function FL defined
by:

(40) F _(v) = Inf {%Hw - v”2+ F(w)} .
& wé€E

In the case where F 1is convex, this is a classical regqularization procedure, due
to Morean and used systematically by Yosida (see {3]). 1Its use in the non-convex case
appears to be new.

Lemma 7. Assume s-l >k and F satisfies condition (31). Then Fs is finite-valued,

differentiable everywhere, and Fé is globally Lipschitzian. Moreover, FE has the

following properties:

(41) Inf F(w) <F {v) <F(v), all v¢€E
wé€E
(42) Fé(v) = 0= 0¢€ F(v)= F (v} = F(v)
1 ) 2
(43) W, FLv) 25 Q- Lk)”Fé(v)H , W e E, ue dF(v)

If F satisfies condition (C=), then F; satisfies condition (C-). If F |is
Sl~invariant, then so is Fa'

The proof of Theorem 2 follows easily from this lemma. Indeed, choose ¢ strictly
smaller than k-l, and consider Fe' Since F satisfies (31), has the Palais-Smale
property (C=) and is invariant, F is Cl, satisfies condition (C-) and is invariant.

Because of inequality (41), the set Qr where F_ - 0 contains the set Q where

F - 0, so that both contain . By Theorem 1, there are at least n distinct




Sl—orbits in Qe consisting of critical points of ¥_. But if v is a zsritical
of Fe in Qe' we use relations (42) to get:
0 € 9F(v) and F(v) = Fe(v) <0

So v 1is in fact a critical point of F and lies in ... The
sl-orbits just found consist of critical points of F and lie in

Let us note that property (43) has not been used in this proof. It
pseudo-gradient property (compare with definition 2), and may be useful in oti.r
ations (for instance, to seek an analogue of the deformation Lemma 4 to give a 1ir -+
proof of Theorem 2, as in {[2]).

We now proceed to the proof of Lemma 7. Throughout, k and ¢ are fixed wit’
¢! > k. Condition (31) holds for F.
Note first that F is finite everywhere. 1Indeed, let Yo be a point where
F(vo) < +o, and set w = Yo in the definition (40) of FS. We get Fg(v).: V- 2»—1.

Taking w = v in the same formula (40), we get FE < F. Moreover, we clearly have:

% [lw - sz + F(v) > Inf F, all (v,w)
E

Using formula (40) again, we cet FE(V) > Inf F. The inequalities (41) are proved.
E

The rest of the proof is not so straightforward, and will require several steps.

Step 1: there is amap ¢ : E > E such that:

all (Vl'v2)

-1
Hw(vl) - w(v2)|l__(l - €k) Hvl - VZH,

F(y(v) = F () - %Hv v P < 4o

2
E-(v - ylv)) € 3F (y(v))
With any v € E, we associate the function GV : E>R U {4} defined hy:
1 2
G (w) = ={lv -w|]"+ Flw) .
v €

Because of assumption (31) on F, and the condition 5-1 ~ k, the function uv

is strictly convex and lower semi-continuous. Moreover, we have

(50) G tw > Elv-wlP+ mEr .
\' - € E




© e e e e

It follows that there is a unique point ¥(v) € E where Gv attains its minimum:

(51) Lilv = v ]2+ FOYe)) = e G (W)
€ v
w€E

Because of formula (40), the right-hand side of formula (51) is just FE(V).

Relation (47) follows.
The point ¢(v) can also be characterized as the unique solution of O € BGV(w).

: . ~1 . . . A
This can also be written 0 € 2(w - v)r + 3F{w), which yields relation (48). Writing

formula (32) for OF, we get:
(52) 0 € 2(w ~ v)a_1 - 2kw + 3G (w)

Let D{(A) be the set of points w where 3G(w) # ¢, and defined a (multi-valued)

map A : D(R) - E by:
(53) A) = 2(c7 Y - Klw + aG @)
Now 3G is a maximal monotone operator (see [3)) because it is the subgradient of

a l.s.c. convex function. It is a standard fact from the theory that if B is maximal

monotone and X is strictly positive, then XI + B is onto, and its inverse satisfies

It follows immediately that A is

-1 . . I . - -1 -
onto and A~ : E - D(A) is Lipschitzian with constant (e 1 k112 1.

a global Lipschitz condition with constant Ao,

We now rewrite equation (52) as:

(54) 2\;{'1 = A(w) for w = (V)

It follows that ¢(v) = A—1(2ve-l), so that ¢ is Lipschitzian with constant
et o = (1 - ke)™l. This is relation (46).

Step 2. FE is everywhere differentiable, Fé is globally Lipschitz, and

condition (42) is satisfied.

Proof. Pick any two points u and v in E. From the definition (40) of Fs’ we

have:
1 2 .
{55) F_(u) i,z‘[“ -y [T+ PtV L

Using equation {(47), this becomes:

.

(56) Fw) - F ) < s e N2 = 1v - e (1?17}

N T R g T Npr
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Performing some algebra, we get from this:

2 -1
lu = wil“e™™ .

I A

(57) @) = F_(v) - 2(v = y(v),u - et

Exchanging the roles of u and v, we also have:

A

(58) F_(V) = F (W - 20 - d(),v - wet <l - v|l2s'1 .

Using the Lipschitz condition (46), we have:
2
(59) [u = ¢t = v+ 9 ,u=-w! <ujlu- v,
with uw =1+ (1 - sk)-l. It follows immediately that:
2
(60) - v,y - w > v - ), v - u) - aflu- vl

Writing this into inequality (58) yields:

(61) FE(V) - Fe(u) - 2(v - Yv),v - u) < (p+ s-l)[hl- V”2

Let us now write inegualities (57) and (61) together:

- - 2
62) IF () - F () -2 - v u - ve ] < e+ e Hlu- vl
This simply means that FE is differentiable at the point v, with:
-1
(63) Fé(v) = 2(v -~ ¢(v))e

a Lipschitz map from E to itself, as announced. Now for condition (42).

By formula (63), F;(v) = 0 if and only if v = ¥(v). By formula (47), this means
exactly that F(v) = Fﬁ(v). By formula (48), this also implies that 0 € 3F(v).

It only remains to prove that O € 3JF(v) implies that F;(v) = 0. Using definition
(32), 0 € “F(v) means that 0 € -2kv + 3G(v). By formula (53), this can also be
written 2.-1v € A(v), or v = A_1(2€_1v). But the right-hand side is just w(v), by
the definition (54) of ), and the result follows from formula (63).

Step 3. Condition (43) is satisfied.

Proof. Pick any u ¢ 3IF(v). By formula (34):
(64) FO(w)) = (W) - vow) + kllwe) = vi|? > Fev)

Jsing equation (47), this becomes:

P;(v) + (k - r-1)|lw(v) -v[[2 + (v - pv),u) > Fv) .




Since Fe < F, this implies that:
-1 2
(66) W=y, > (e -k |lww) -v|
Using v = y¥{v) = eFé(v)/2, equation (63), this yields
£ -1 62 2
67) 5 (FLv),u) > (e 7 - k) THF;(WH

Simplifying throughout, we get condition (63).
Step 4. If F satisfies condition (C=), then Fe satisfies condition (C-).
Proof. Let VL be a sequence in E such that:

(68) F(vn) < -2 <0, all n
(69) F'{(v.) >0 when n » = ,
€ n

We want to show that there is a subsequence vn which converges in E. Set

k
w = P(v.) and u = 2(v - w)e l. Using formula (47), we have:
n n n n n
(70) F(w } <P(v ) < -a <0, all n.
n - n’ -
Using formula (48), we also have:
(71) u € 3F(w ), all n .
n n
Finally, from formulas (63) and (68) we get:
(72) u =F'{(v.) ~»0
n € n

Since the function F satisfies condition (C=), we conclude from (70), (71) and

(72) that the sequence wn has a convergent subsequence wn . But:
k

(73) voo-w_ =

so that the sequence vn itself converges. Hence the result.
k

. 1 .
Step 5. If F is S -invariant, then so is F
Step > e

Proof: JPick any ¢ € S1 and v ¢ E. Recall the definition (40) of Fr:
1 2
(74) F (L) = Inf {= llw = L(BYV|]® + F(w)
[ WGE =
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Since L(8) 1is invertible, we can set w = L(%)u, and the right-hand sid.
becomes:
1 | 2 |
F_(L(B)v) = Inf { = lLeoryu - Leeyv]|® + F‘(L(@)u)[
u€E
But L(6) is an isometry and F is invariant. The desired result follows:
1 2
(76) F_(L(8)V) = Inf E[lu - vil“+ Flw
ué€E
= Fe(v)
I
¢
-
L
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)
]
}
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IV. THE GENERAL CASE.

i D i 1 e P

We now have to show how to go beyond the case where the Hamiltonian H is posi-

o 51 vl =

tively homogeneous of degree two. This is done by using a trick which we learned from
Rabinowitz, but which seems to be classical in Hamiltonian mechanics.

The fact is that the trajectories of Hamilton's equations G = <H'(u) on the

energy surface S defined by H(u) = h depend only on $§ and not on H. More pre- |
cisely, if another Hamiltonian system also has S as a particular energy surface, it i
will have the same trajectories as the preceding one on that surface S. The solutions
themselves, however, may not be the same for both systems, since the same trajectories
may be described with different speeds all along the path.

We now substantiate these statements in the case of a convex energy surface, which
is the only one we are interested in. We begin by giving a few classical definitions

in convex analysis (see [21]).

Definition 1. Let C be a closed convex subset of RZn containing the origin. 1Its
gauge is the function J : P?" R U {+»} defined by:
1) J() = Imnf{x > olue ac} .

It is well-known that J is a lower semi-continuous convex function. If the set
C is bounded, J{u) = 0 1if and only if u = 0. 1If its interior ¢ contains the
origin, J 1is finite everywhere, and hence continuous. Moreover, J 1is positively
homogeneous of degree one, and C is exactly the set of points where J - 1:
(2) ¥i > 0, J(\) = rJ(u)
(3) ue Cc=Ju <1 .
Definition 2. Let C be a closed convex subset of Rzn, and u a roint in C. The

normal cone to C at u is the set:

(4) Nc(u) = {we Rzn!(w,v -u) = 0¥ve C-

ey

It is clear that NC(u) is a closed convex cone, and that NC(U) = -0' if only

°
u belongs to the interior C.
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let us assume that 0 € 8, and denote by S the boundary of C. For any point

u in S, the subdifferential 3J(u) of the gauge is a convex, compact, non-emgty
el
subset of R‘n, not containing O, and the following relation holds:

(5) Yu € 5, N (u) = U +5J(u) .
C i) \O

If the normal cone Nc(u) reduced to a half-line, “J(u) can '» seen to be a

singleton:
e |
(e,u)

- : Uall o 1) = 3oy = 4
(NC(u) —-eR+ with 'le!'= 1) Ja) {

- o
Definition 3. Let C be a closed convex subset of R°", with interior C # + and

boundary S. We shall say that it is C1 if, for every u € S, the normal cone Nc(u)

reduces to a half-line.

If C 1is Cl bounded and 0 € é, then 3J{(u) 1is a singleton for every u € S.
Since J 1is positively homogeneous of degree one, 3J(iu) = 3J(u) for all X > O,
so that 3J(v) will be a singleton for all v lying in Rzn\{o}. It follows that the
function J 1is C1 on the (open) region where it is non-zero. In other words, J |is
Cl on a neighbourhood of S, which enables us to consider the Hamiltonian system

G = oJ(u) and its trajectories on S.

s 2 1 . N
Proposition 4. Let CCR n be closed, convex, bounded and C, with 0 in its
1 R
interior. Let 1« be some neighbourhood of § and H: U->S a C function such

that, for some constant h ¢ R:
(7) S = fulH(u) = hi .
Assume that H'(u)-nc(u) > 0 for all u S, where nc(u) is the exterior normal

vector to C at u (the unit vector in Nc(u)). Then the Hamiltonian systems:

() G = ~J' (u)

(9) a = ~H' (u)

rnave the same trajectories on S.

. an

o

o




Let H and H be two Hamiltonians consta,.* on S and satisfying:

1 2
(10) Hi(u)-nc(u) >0 all ue€e s, i=1,2
We shall show that Hamiltonian systems (Hl) and (HZ) have the same trajectories on
S. The proposition will follow by taking Hl = H and H2 = J.
The two Hamiltonians Hl and H2 being constant on S with nonvanishing gradients

(Hi(u) #0 for all ue S, i = 1,2) there exists a continuous function a : S *1R+

such that
(11) Hé(u) = a(u)Hi(u) Yu € S
(12) 0 = ay = afu) < ay Yu € S

let u be a trajectory of (Hl) on the energy level S. From the definition of a

trajectory (see II.A) this means that u is the equivalence class of a solution v, of

(Hl) on S. Let v : R >R be the C1 diffeomorphism defined by

s
dt
13) ois) = [ ———r
0 u(ul(t))
and let u2 = u1 ° ¢—1. We have for all s € R
(14) iy () = 8, ¢ e) :

gl (s))

- aHi(ul(¢-1(s)))u(ul(¢—1(s))3

L1}

nHé(uz(s))

so that u, is a solution of the Hamiltonian system (Hz) on S, and also belongs to

the same equivalence class u as vy (because w, = vy e ¢-l, see II.A). S0 u is

trajectory for (Hz) on S.
We have seen that any trajectory of the Hamiltonian system (Hl) is a trajectory
of the Hamiltonian system (Hz). Changing the roles of (Hl) and (H2) we get that

the trajectories of (Hl) and (H2) on S are the same.

We can also see from the proof that a periodic trajectory of (H,}) on S is a

periodic trajectory of (H2) on S.

-39-
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Hence the definition:

A 2n 1
Definition 5. Let C CR be a C convex compact set, with non-empty intcerior.

. 0 . S
Let S be its boundary, and let u be any point in its interior: u: ©

~ 5. Lt 7

0 . .
be the gauge of the translate C - u . We define Hamiltonian trajectories on &%

the trajectories of the differential system:
(16) alt) = o °
ult) = oJ'(ult) +u) on S .

By the preceding considerations, this definition does not depend on the parti-ul.r
choice of uo in C€\8, and any other Hamiltonian H with non-vanishing gradicnt wil!l
yield the same trajectories on S.

We are now in a position to state the main result of this paper:
Theorem 1. Let C be a C1 convex compact subset of R » K' with non-empty interior.

Let S be its boundary. Assume there is an m-dimensional subspace F of Rn, a roin+

uo in C\S, and a constant r > 0 such that:

a7 wae s, |ju-ul>r
(18) Yu € S, Hﬂ):(“ - uo)]\ <2,

2 : . .
where HF H R.n > F X F is the orthogonal projection.

Then there are at least m distinct periodic Hamiltonian trajectories on S.
Proof. Let A be a rotation in R which brings the linear subspace
X = ... =% =0 onto F, Then the translation u -+ u + u and the rotation
m+1 n o
. n n . s :
A xA in R x IR bring the general situation to the case where:

(19) W=o

2n , 2,
,um+l—...—un—0 in RV,

F xP={u€eRr
Since these transformations are canonical, i.e. they preserve the Hamiltonian
character of equations, we can assume that (19) and (20), so HF is just Ym (sec IT-(3))Y,

Now consider the Hamiltonian:

(21) Hm)=[JmH2

with J the gauge of C. It is convex, Cl, positively homogeneous of deqree tweo, wit®

an isolated zero at the origin. It follows that:
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2n

(22) Yu e R, H(u)-l/zu € S .

Conditions (17) and (18) now become:

(23) vu € 82, [lufln) V25 ¢

(24) vu ¢ R27, HnmuH <xv2

This can be made more precise, using the compactness of S, Define:

2

(26) £ = Max{|lufl % ue s} <z

r

(27) Y Min{HHmuH-zlu ¢ s} >

We have 0 < 8 < 2y, and Y“HmuH2 < H(u) < BHuH2. All the assumptions of
Theorem II.1l are satisfied. Then so is the conclusion: there are at least m distinct
periodic trajectories of U = oH'(u) on S. These are the m distinct periodic
Hamiltonian trajectories we were looking for.

The assumptions (17) and (18) can be stated geometrically as follows. Let B be
the closed ball of center uO and radius r, and let BF be its intersection with
F x F. Then what is assumed is that § lies entirely between the ball B and the
cylinder with basis Bv2 and generatrices orthogonal to F x F. The most interesting

. . n
case is when m = n, which means F =R :

2 s : °
Theorem 2. Let C be a C1 compact convex subset of R " with interior C £ ¢

and boundary S. Assume some closed ball B(uo;r) can be found with:

(28) B’ ¢ ¢ cBuied)

Then there are at least n distinct periodic Hamiltonian trajectories on S.

A striking feature of condition (28) is that it is invariant by isometries ~ but
certainly not by canonical transformations, even linear ones. Of course, the conclusion
itself, the existence of n distinct periodic Hamiltonia trajectories, will hold for
any compact hypersurface S C R2n which can be brought to be the boundary of a convex

set C satisfying (28) by a canonical transformation. We have been unable to

characterize such hypersurfaces; sece Weinstein ([26]) for more light on this problem.

Cemmam e o




We conclude by indicating that our global result, and Weinstein's local theorem
([24]) have peculiar features, which make them irreducible to each other: the
Hamiltonians we are dealing with are Cl, and have to satisfy a geometric condition
(28), whereas Weinstein has no such condition, but requires the Hamiltonian to be C2.

This is more significant that it might seem. We could, for instance, try to prove
directly Theorem II.l using Weinstein's theorem: since the Hamiltonian involved is 4
positively homogeneous of degree two, periodic trajectories on small energy levels can
be transported by homothety to any prescribed energy level. 1In other words, the global
problem follows from the local one. Alas, in this particular case, the Hamiltonian is
not C2 at the origin! 1Indeed, it is C2 if and only if it is exactly quadratic, so

that we fall back on the linear case.

Conversely, our result will prove that there are n periodic orbits on all small

X . : . 2 .
energy levels, provided the Hamiltonian H is C and W < 2w1, where the i.lwk,
s <~k < n, are the eigenvalues of oH"(0), and 0 < wl < wk < mn. Indeed, it is well

known that one can find a linear and canonical change of variables which brings §"(0)

to the form:

Y3 2 2
(29) (H" (Q)u,u) = 5 (xi + pi)

i

i ~13

1
One can then modify H outside some neighbourhood of the origin so that it becomes
- convex and satisfies estimate (2) of Section II. The result we get in this way is weaker

than Weinstein's theorem, which lies no requirement on the wy - Note, however, that our

i i e N cne . Ra

condition, W < 2ml, is not of the traditional "non-resonance" type: we could well

have mj = W for some j and k. 1In other words, this approach is not deterred by

"small divisors" problems.

ACKNOWLEDGMENTS
3 The authors are indebted to Alan Weinstein, who pointed out various mistakes in an

earlier version of this paper, and Paul Rabinowitz, who indicated several improvements,

including the use of the index theory [11].

~42-

ve wrtens




R LI

(1]

(2}

(31

{4]

(51

(6]

(8]

[9]

101

f11)

12]

[13]

REFERENCES
J. P. Aubin and I. Ekeland, "Second-order evolution equations with convex
Hamiltonian", Canadian Math. Bulletin, to appear.
M. Bougeard, "Theorie de Morse pour des fonctions non différentiables", These de
3°™ cycle, Université Paris-Dauphine, 75775 Paris.
H. Brezis, "Operateurs maximaux monotones et semi-groupes nonlinéaires dams les
espaces de Hilbert, North-Holland-Elsevier.
D. Clark, "A variant of the Liusternik-Schnirelman theory", Indiana University
Math. Journal, 22, 1972, p. 65-74.
F. Clarke, "Periodic solutions to Hamiltonian inclusions", Journal of Differential
Equations, to appear.
F. Clarke and I. Ekeland, "Hamiltonian trajectories having prescribed minimal
period", Communications in Pure and Applied Mathematics, to appear.
I. Ekeland, "Periodic solutions of Hamiltonian equations and a theorem of
P. Rabinowitz", Journal of Differential Equations, to appear.
I. Ekeland et J.-M. lasry, Sur le nombrede solutions périodiques des équations de
Hamilton, Cahiers de mathematiques de la décision, 7902, Ceremade, Université
de Paris-Dauphine, 75775 Paris.
I. Ekeland and J. M. Lasry, "Nombre de solutions périodiques des équations de
Hamilton”, CRAS Paris, 1979.
I. Ekeland and R. Temam, "Convex analysis and variational problems", North-Holland-
Elsevier, 1976.
E. Fadell and P. Rabinowitz, "Generalized cohomological index theories for group
actions with an application to bifurcation questions for Hamiltonian systems”,
Inventiones Mathematicae 45, 1978, p. 139~174.
J. Horn, "Beitrdgezur Theorie der kleinen Schwingungen", Zeitschrift Math. Phys.
48, 1913, pp. 4n0-434.
M. A. ¥rasnoselskii, "Topological methods in the theory of nonlinear integral

equations", Perganion Press,

-43-




(14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

(251

[26]

A. Liapounov, "Probléme général de la stabilité du mouvement”, Annale: de la
Faculté des Sciences de Toulouse, 2, 1907, p. 203-474 (translation of the 1572
Russian version).

J. J. Moreau, "Fonctionnelles convexes", Séminaire Leray, Collége de France,
1968.

J. Moser, "Periodic orbits near an equilibrium and a thecvem by Alan Weinstein,
“Communications in Pure and Applied Mathematics, 29, 1976, p. 727-747.

R. Palais, "Critical point theory and the minimax principle”, Proceedings
Symposium in Pure Math., AMS 15, 1970, p. 185-212.

P. Rabinowitz, "Variational methods for nonlinear eigenvalue problems", Centre
Internazionale Matematico Estivo 1974, Edizioni Cremonese, p. 141-195.

P. Rabinowitz, "Periodic solutions of Hamiltonian systems", Communications in
Pure and Applied Mathematics 31, 1978, p. 157-184.

P. Rabinowitz, "A variational method for finding periodic solutions of differ-
ential equations", Proceedings of the Symposium on Nonlinear Evolution Equations,
1977, Academic Press.

R. T. Rockafellar, "Convex analysis", Princeton University Press.

J. T. Schwartz, "Notes on nonlinear functional analysis", Gordon and Breach, 1969.
H. Seifert, "Periodische Bewegungen mekanischer Systemen”, Mathematische
Zeitschrift 51, 1948, p. 197-216.

A. Weinstein, "Normal modes for nonlinear Hamiltonian systems", Inventiones
Mathematicae, 20, 1973, p. 47~57.

A. Weinstein, "Periodic orbits for convex Hamiltonian systems", Annals of
Mathematics.

A. Weinstein, "On the hypothesis of Rabinowitz's periodic orbit theorem",

preprint 1979.

IE/JML/ed

-44-

G




SECURITY CLASSIFICATION OF THIS PAGE (When Deia Entered)

REPORT DOCUMENTATION PAGE BER D TR IO Ru

R T A a—
. REPORT NUMBER IZ. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

2050 dD-Aofé567

. TITLE (and Subtitle) S. TYPE OF REPORT a PERIOD COVERED

Summary Report - no specific
oyt . N
ON THE NUMBER OF PERIODIC TRAJECTORIES FOR A reporting period

HAMILTONIAN FLOW ON A CONVEX ENERGY SURFACE S PERTORWING ORG. REFORT NUWSER

« AUTHOR(s) B. CONTRACY OR GRANT NUMBER(s)

Ivar Ekeland and Jean-Michel Lasry DAAG29-75-C-0024

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :;CE)GR&A: ERL.EMENT. PRO.IEECT, TASK
Mathematics Research Center, University of A & WORK UNIT NUMBERS
610 Walnut Street Wisconsin Work Unit MNumber 1 -

Madison, Wisconsin 53706 Applied Analysis
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office March 1980

P.O. Box 12211 13. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 44

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIET

158, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

E 17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, {{ different (rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identify by block numbder)

Hamiltonian, periodic solutions

20. ABSTRACT (Continue on reverse side it necessary and identify by dlock number)

In this paper, we look for periodic solutions, with prescribed energy

i h € R, of Hamilton's equations:
¢ = 28 ..o
G = o (x,p)y B =-7= (x,p) .
(continued)
DD ':2:1” ]‘73 EDITION OF Y NOV 6313 OBSOLETE UNCLASSI PIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data
e e i iine iR i = it




ABSTRACT (continued)

. , n
It is assumed that the Hamiltonian H 1is convex on R X Rﬁ, and that the

origin (0,0) is an isolated equilibrium. It is also assumed that some ball B
around the origin can be found such that the energy surface H-l(h) lies outside

B but inside v2 B. Under these assumptions, we prove that there are at least

n distinct periodic orbits of the Hamiltonian flow (H) with energy level h.




